Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Journal of Geophysical Research Atmospheres ; 128(11), 2023.
Article in English | ProQuest Central | ID: covidwho-20239181

ABSTRACT

The COVID‐19 pandemic resulted in a widespread lockdown during the spring of 2020. Measurements collected on a light rail system in the Salt Lake Valley (SLV), combined with observations from the Utah Urban Carbon Dioxide Network observed a notable decrease in urban CO2 concentrations during the spring of 2020 relative to previous years. These decreases coincided with a ∼30% reduction in average traffic volume. CO2 measurements across the SLV were used within a Bayesian inverse model to spatially allocate anthropogenic emission reductions for the first COVID‐19 lockdown. The inverse model was first used to constrain anthropogenic emissions for the previous year (2019) to provide the best possible estimate of emissions for 2020, before accounting for emission reductions observed during the COVID‐19 lockdown. The posterior emissions for 2019 were then used as the prior emission estimate for the 2020 COVID‐19 lockdown analysis. Results from the inverse analysis suggest that the SLV observed a 20% decrease in afternoon CO2 emissions from March to April 2020 (−90.5 tC hr−1). The largest reductions in CO2 emissions were centered over the northern part of the valley (downtown Salt Lake City), near major roadways, and potentially at industrial point sources. These results demonstrate that CO2 monitoring networks can track reductions in CO2 emissions even in medium‐sized cities like Salt Lake City.Alternate :Plain Language SummaryHigh‐density measurements of CO2 were combined with a statistical model to estimate emission reductions across Salt Lake City during the COVID‐19 lockdown. Reduced traffic throughout the COVID‐19 lockdown was likely the primary driver behind lower CO2 emissions in Salt Lake City. There was also evidence that industrial‐based emission sources may of had an observable decrease in CO2 emissions during the lockdown. Finally, this analysis suggests that high‐density CO2 monitoring networks could be used to track progress toward decarbonization in the future.

2.
Atmospheric Chemistry and Physics ; 23(11):6127-6144, 2023.
Article in English | ProQuest Central | ID: covidwho-20232936

ABSTRACT

According to the United States Environmental Protection Agency (US EPA), emissions from oil and gas infrastructure contribute 30 % of all anthropogenic methane (CH4) emissions in the US. Studies in the last decade have shown emissions from this sector to be substantially larger than bottom-up assessments, including the EPA inventory, highlighting both the increased importance of methane emissions from the oil and gas sector in terms of their overall climatological impact and the need for independent monitoring of these emissions. In this study we present continuous monitoring of regional methane emissions from two oil and gas basins using tower-based observing networks. Continuous methane measurements were taken at four tower sites in the northeastern Marcellus basin from May 2015 through December 2016 and five tower sites in the Delaware basin in the western Permian from March 2020 through April 2022. These measurements, an atmospheric transport model, and prior emission fields are combined using an atmospheric inversion to estimate monthly methane emissions in the two regions. This study finds the mean overall emission rate from the Delaware basin during the measurement period to be 146–210 Mg CH4 h-1 (energy-normalized loss rate of 1.1 %–1.5 %, gas-normalized rate of 2.5 %–3.5 %). Strong temporal variability in the emissions was present, with the lowest emission rates occurring during the onset of the COVID-19 pandemic. Additionally, a synthetic model–data experiment performed using the Delaware tower network shows that the presence of intermittent sources is not a significant source of uncertainty in monthly quantification of the mean emission rate. In the Marcellus, this study finds the overall mean emission rate to be 19–28 Mg CH4 h-1 (gas-normalized loss rate of 0.30 %–0.45 %), with relative consistency in the emission rate over time. These totals align with aircraft top-down estimates from the same time periods. In both basins, the tower network was able to constrain monthly flux estimates within ±20 % uncertainty in the Delaware and ±24 % uncertainty in the Marcellus. The results from this study demonstrate the ability to monitor emissions continuously and detect changes in the emissions field, even in a basin with relatively low emissions and complex background conditions.

3.
Solid Earth ; 14(5):529-549, 2023.
Article in English | ProQuest Central | ID: covidwho-2322957

ABSTRACT

The sediments underneath Mexico City have unique mechanical properties that give rise to strong site effects. We investigated temporal changes in the seismic velocity at strong-motion and broadband seismic stations throughout Mexico City, including sites with different geologic characteristics ranging from city center locations situated on lacustrine clay to hillside locations on volcanic bedrock. We used autocorrelations of urban seismic noise, enhanced by waveform clustering, to extract subtle seismic velocity changes by coda wave interferometry. We observed and modeled seasonal, co- and post-seismic changes, as well as a long-term linear trend in seismic velocity. Seasonal variations can be explained by self-consistent models of thermoelastic and poroelastic changes in the subsurface shear wave velocity. Overall, sites on lacustrine clay-rich sediments appear to be more sensitive to seasonal surface temperature changes, whereas sites on alluvial and volcaniclastic sediments and on bedrock are sensitive to precipitation. The 2017 Mw 7.1 Puebla and 2020 Mw 7.4 Oaxaca earthquakes both caused a clear drop in seismic velocity, followed by a time-logarithmic recovery that may still be ongoing for the 2017 event at several sites or that may remain incomplete. The slope of the linear trend in seismic velocity is correlated with the downward vertical displacement of the ground measured by interferometric synthetic aperture radar, suggesting a causative relationship and supporting earlier studies on changes in the resonance frequency of sites in the Mexico City basin due to groundwater extraction. Our findings show how sensitively shallow seismic velocity and, in consequence, site effects react to environmental, tectonic and anthropogenic processes. They also demonstrate that urban strong-motion stations provide useful data for coda wave monitoring given sufficiently high-amplitude urban seismic noise.

4.
Earth System Science Data ; 15(5):1947-1968, 2023.
Article in English | ProQuest Central | ID: covidwho-2319341

ABSTRACT

Volatile organic compounds (VOCs) have direct influences on air quality and climate. They indeed play a key role in atmospheric chemistry as precursors of secondary pollutants, such as ozone (O3) and secondary organic aerosols (SOA). In this respect, long-term datasets of in situ atmospheric measurements are crucial for characterizing the variability of atmospheric chemical composition, its sources, and trends. The ongoing establishment of the Aerosols, Cloud, and Trace gases Research InfraStructure (ACTRIS) allows implementation of the collection and provision of such high-quality datasets. In this context, online and continuous measurements of O3, nitrogen oxides (NOx), and aerosols have been carried out since 2012 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory, located in the Paris region, France. Within the last decade, VOC measurements were conducted offline at SIRTA, until the implementation of real-time monitoring which started in January 2020 using a proton-transfer-reaction quadrupole mass spectrometer (PTR-Q-MS).The dataset acquired during the first 2 years of online VOC measurements provides insights into their seasonal and diurnal variabilities. The additional long-term datasets obtained from co-located measurements (NOx, aerosol physical and chemical properties, meteorological parameters) are used to better characterize the atmospheric conditions and to further interpret the obtained results. Results also include insights into VOC main sources and the influence of meteorological conditions and air mass origin on their levels in the Paris region. Due to the COVID-19 pandemic, the year 2020 notably saw a quasi-total lockdown in France in spring and a lighter one in autumn. Therefore, the focus is placed on the impact of these lockdowns on the VOC variability and sources. A change in the behaviour of VOC markers for anthropogenic sources was observed during the first lockdown, reflecting a change in human activities. A comparison with gas chromatography data from the Paris city centre consolidates the regional representativity of the SIRTA station for benzene, while differences are observed for shorter-lived compounds with a notable impact of their local sources. This dataset could be further used as input for atmospheric models and can be found at 10.14768/f8c46735-e6c3-45e2-8f6f-26c6d67c4723 (Simon et al., 2022a).

5.
IOP Conference Series Earth and Environmental Science ; 1164(1):011001, 2023.
Article in English | ProQuest Central | ID: covidwho-2313029

ABSTRACT

International Conference on Geospatial Science for Digital Earth Observation (GSDEO 2021)The international conference on "Geospatial Science for Digital Earth Observation” (GSDEO) 2021 was successfully held on a virtual platform of Zoom on March 26th and 27th, 2021. The conference was jointly organized by the Indian Society of Remote Sensing (ISRS), Kolkata chapter, and the Department of Geography, School of Basic and Applied Sciences, Adamas University. Due to the non-predictable behaviour of the COVID-19 second wave, which imposed restrictions on organizing offline events, the GSDEO (2021) organizing committee decided to organize the conference online, instead of postponing the event.Remotely sensed data and geographic information systems have been increasingly used together for a vast range of applications, which include land use/land cover mapping, water resource management, weather forecasting, environmental monitoring, agriculture, disaster management, etc. Currently, intensive research is being carried out using remotely sensed data on the geoinformatics platform. New developments have led to dynamic advances in recent years. The objective of the international conference on Geospatial Science for Digital Earth Observation (GSDEO 2021) was to bring the scientists, academicians, and researchers, in the field of geo-environmental sciences on a common platform to exchange ideas and their recent findings related to the latest advances and applications of geospatial science. The call for papers received an enthusiastic response from the academic community, and over 100+ participants from 50+ colleges, universities, and institutions participated in the conference. In total 50+ research papers had been presented through the virtual Zoom conference platform in GSDEO 2021.The conference witnessed the presentation of research papers from diverse applied fields of geospatial sciences, which include the application of geoinformatics in geomorphology, hydrology, urban science, land use planning, climate, and environmental studies. There were four sessions namely, TS 1: Geomorphology and Hydrology, TS 2: Urban Science, TS 3: Social Sustainability and Land Use Planning, and TS 4: Climate and Environment. Each session was further subdivided, into two parts, namely Technical Session 1-A and 1-B. Each sub-session had been designed with one keynote speech and 5 oral presentations. Oral sessions were organized in two parts and offered through live and pre-recorded components based on the preference of the presenters. The presentation session was followed by a live Q&A session. The session chairs moderated the discussions. Similarly, poster sessions were organized in three parts and offered e-poster, live, and pre-recorded components. The best presenter of each sub-session received the best paper award.Dr. Prithvish Nag, Ex-Director of NATMO & Ex Surveyor General of India delivered the inaugural speech, and Dr. P. Chakrabarti, Former Chief Scientist of the DST&B, Govt. of West Bengal delivered a special lecture after the inaugural session. Eight eminent keynote speakers, Prof. S.P. Agarwal from the Indian Institute of Remote Sensing, Prof. Ashis Kumar Paul from Vidyasagar University, Prof. Soumya Kanti Ghosh from the Indian Institute of Technology, Kharagpur, Prof. L. N. Satpati from the University of Calcutta, Prof. R.B. Singh from the University of Delhi, Dr. A.K. Raha, IFS (Retd), Prof. Gerald Mills from the University College Dublin and Prof. Sugata Hazra from Jadavpur University enriched the knowledge of participants in the field of geoinformatics by their informative lectures. The presentations and discussions widely covered the various spectrums of geoinformatics and its application in monitoring natural resources like vegetation mapping, agricultural resource monitoring, forest health assessment, water, and ocean resource management, disaster management, land resource management, water and climate studies, drought vulnerability assessment, groundwater quality monitoring, accretion mapping and the use of geospatial sci nce in studying morphological, hydrological, and other biophysical characteristics of a region etc. Application of geoinformatics in predicting urban expansion, urban climate, disaster management, healthcare accessibility, anthropogenic resource monitoring, spatial-interaction mapping, and, sustainable regional planning were well-discussed topics of the conference.List of Committees, photos are available in the pdf.

6.
Atmospheric Chemistry and Physics ; 23(7):4271-4281, 2023.
Article in English | ProQuest Central | ID: covidwho-2306379

ABSTRACT

Air quality network data in China and South Korea show very high year-round mass concentrations of coarse particulate matter (PM), as inferred by the difference between PM10 and PM2.5. Coarse PM concentrations in 2015 averaged 52 µg m-3 in the North China Plain (NCP) and 23 µg m-3 in the Seoul Metropolitan Area (SMA), contributing nearly half of PM10. Strong daily correlations between coarse PM and carbon monoxide imply a dominant source from anthropogenic fugitive dust. Coarse PM concentrations in the NCP and the SMA decreased by 21 % from 2015 to 2019 and further dropped abruptly in 2020 due to COVID-19 reductions in construction and vehicle traffic. Anthropogenic coarse PM is generally not included in air quality models but scavenges nitric acid to suppress the formation of fine particulate nitrate, a major contributor to PM2.5 pollution. GEOS-Chem model simulation of surface and aircraft observations from the Korea–United States Air Quality (KORUS-AQ) campaign over the SMA in May–June 2016 shows that consideration of anthropogenic coarse PM largely resolves the previous model overestimate of fine particulate nitrate. The effect is smaller in the NCP which has a larger excess of ammonia. Model sensitivity simulations for 2015–2019 show that decreasing anthropogenic coarse PM directly increases PM2.5 nitrate in summer, offsetting 80 % the effect of nitrogen oxide and ammonia emission controls, while in winter the presence of coarse PM increases the sensitivity of PM2.5 nitrate to ammonia and sulfur dioxide emissions. Decreasing coarse PM helps to explain the lack of decrease in wintertime PM2.5 nitrate observed in the NCP and the SMA over the 2015–2021 period despite decreases in nitrogen oxide and ammonia emissions. Continuing decrease of fugitive dust pollution means that more stringent nitrogen oxide and ammonia emission controls will be required to successfully decrease PM2.5 nitrate.

7.
Atmosphere ; 14(4):630, 2023.
Article in English | ProQuest Central | ID: covidwho-2306097

ABSTRACT

To avoid the spread of COVID-19, China has implemented strict lockdown policies and control measures, resulting in a dramatic decrease in air pollution and improved air quality. In this study, the air quality model WRF-Chem and the latest MEIC2019 and MEIC2020 anthropogenic emission inventories were used to simulate the air quality during the COVID-19 lockdown in 2020 and the same period in 2019. By designing different emission scenarios, this study explored the impact of the COVID-19 lockdown on the concentration of air pollutants emitted by different sectors (industrial sector and transportation sector) in Nanjing for the first time. The results indicate that influenced by the COVID-19 lockdown policies, compared with the same period in 2019, the concentrations of PM2.5, PM10, and NO2 in Nanjing decreased by 15%, 17.1%, and 20.3%, respectively, while the concentration of O3 increased by 45.1% in comparison;the concentrations of PM2.5, PM10 and NO2 emitted by industrial sector decreased by 30.7%, 30.8% and 14.0% respectively;the concentrations of PM2.5, PM10 and NO2 emitted by transportation sector decreased by 15.6%, 15.7% and 26.2% respectively. The COVID-19 lockdown has a greater impact on the concentrations of PM2.5 and PM10 emitted by the industrial sector, while the impact on air pollutants emitted by the transportation sector is more reflected in the concentration of NO2. This study provides some theoretical basis for the treatment of air pollutants in different departments in Nanjing.

8.
Atmospheric Measurement Techniques ; 16(8):2237-2262, 2023.
Article in English | ProQuest Central | ID: covidwho-2304944

ABSTRACT

Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s-1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s-1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory.Weekly variations in NO2 emission are highly related to anthropogenic activities, such as the transport sector. The NO2 emissions were reduced by 16 % at weekends in Riyadh, and high reductions were found near the city center and in areas along the highway. An average weekend reduction estimate of 28 % was found in Madrid. The regions with dominant sources are located in the east of Madrid, where residential areas and the Madrid-Barajas airport are located. Additionally, due to the COVID-19 lockdowns, the NO2 emissions decreased by 21 % in March–June 2020 in Riyadh compared with the same period in 2019. A much higher reduction (62 %) is estimated for Madrid, where a very strict lockdown policy was implemented. The high emission strengths during lockdown only persist in the residential areas, and they cover smaller areas on weekdays compared with weekends. The spatial patterns of NO2 emission strengths during lockdown are similar to those observed at weekends in both cities. Although our analysis is limited to two cities as test examples, the method has proven to provide reliable and consistent results. It is expected to be suitable for other trace gases and other target regions. However, it might become challenging in some areas with complicated emission sources and topography, and specific NO2 decay times in different regions and seasons should be taken into account. These impacting factors should be considered in the future model to further reduce the uncertainty budget.

9.
Aeromicrobiology ; : 1-16, 2023.
Article in English | Scopus | ID: covidwho-2296869

ABSTRACT

The introductory chapter introduces aeromicrobiology as a part of aerobiology essentially concerned with aerosolization, transmission, and deposition of microorganisms. Differential characteristics of the various strata of the atmosphere are described. The various groups of microorganisms, namely bacteria, archaea, fungi, protozoans, algae, and viruses, are examined, with particular attention to the forms and functions and propensity to become airborne. The indoor and outdoor sources of microorganisms as well as the natural and anthropogenic factors that modulate their aerosolization and survival in the air are elucidated. Molecular approach to sampling and analysis of bioaerosols samples is highlighted as a game changer in our understanding of airborne microbes. While emphasizing the long history of control of microorganism in the air dating back to the infancy of knowledge of germs, human-made biological agents and biocontrol agents are identified as a major threat to human existence, deserving attention, even as various conspiracy theories as in the case of SARS-CoV-2 remain unverified. © 2023 Elsevier Inc. All rights reserved.

10.
International Journal of Climate Change Strategies and Management ; 15(2):212-231, 2023.
Article in English | ProQuest Central | ID: covidwho-2296135

ABSTRACT

PurposeCarbon trading mechanism has been adopted to foster the green transformation of the economy on a global scale, but its effectiveness for the power industry remains controversial. Given that energy-related greenhouse gas emissions account for most of all anthropogenic emissions, this paper aims to evaluate the effectiveness of this trading mechanism at the plant level to support relevant decision-making and mechanism design.Design/methodology/approachThis paper constructs a novel spatiotemporal data set by matching satellite-based high-resolution (1 × 1 km) CO2 and PM2.5 emission data with accurate geolocation of power plants. It then applies a difference-in-differences model to analyse the impact of carbon trading mechanism on emission reduction for the power industry in China from 2007 to 2016.FindingsResults suggest that the carbon trading mechanism induces 2.7% of CO2 emission reduction and 6.7% of PM2.5 emission reduction in power plants in pilot areas on average. However, the reduction effect is significant only in coal-fired power plants but not in gas-fired power plants. Besides, the reduction effect is significant for power plants operated with different technologies and is more pronounced for those with outdated production technology, indicating the strong potential for green development of backward power plants. The reduction effect is also more intense for power plants without affiliation relationships than those affiliated with particular manufacturers.Originality/valueThis paper identifies the causal relationship between the carbon trading mechanism and emission reduction in the power industry by providing an innovative methodology for identifying plant-level emissions based on high-resolution satellite data, which has been practically absent in previous studies. It serves as a reference for stakeholders involved in detailed policy formulation and execution, including policymakers, power plant managers and green investors.

11.
Atmosphere ; 14(2):311, 2023.
Article in English | ProQuest Central | ID: covidwho-2277674

ABSTRACT

In preparation for the Fourth Industrial Revolution (IR 4.0) in Malaysia, the government envisions a path to environmental sustainability and an improvement in air quality. Air quality measurements were initiated in different backgrounds including urban, suburban, industrial and rural to detect any significant changes in air quality parameters. Due to the dynamic nature of the weather, geographical location and anthropogenic sources, many uncertainties must be considered when dealing with air pollution data. In recent years, the Bayesian approach to fitting statistical models has gained more popularity due to its alternative modelling strategy that accounted for uncertainties for all air quality parameters. Therefore, this study aims to evaluate the performance of Bayesian Model Averaging (BMA) in predicting the next-day PM10 concentration in Peninsular Malaysia. A case study utilized seventeen years' worth of air quality monitoring data from nine (9) monitoring stations located in Peninsular Malaysia, using eight air quality parameters, i.e., PM10, NO2, SO2, CO, O3, temperature, relative humidity and wind speed. The performances of the next-day PM10 prediction were calculated using five models' performance evaluators, namely Coefficient of Determination (R2), Index of Agreement (IA), Kling-Gupta efficiency (KGE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The BMA models indicate that relative humidity, wind speed and PM10 contributed the most to the prediction model for the majority of stations with (R2 = 0.752 at Pasir Gudang monitoring station), (R2 = 0.749 at Larkin monitoring station), (R2 = 0.703 at Kota Bharu monitoring station), (R2 = 0.696 at Kangar monitoring station) and (R2 = 0.692 at Jerantut monitoring station), respectively. Furthermore, the BMA models demonstrated a good prediction model performance, with IA ranging from 0.84 to 0.91, R2 ranging from 0.64 to 0.75 and KGE ranging from 0.61 to 0.74 for all monitoring stations. According to the results of the investigation, BMA should be utilised in research and forecasting operations pertaining to environmental issues such as air pollution. From this study, BMA is recommended as one of the prediction tools for forecasting air pollution concentration, especially particulate matter level.

12.
Atmospheric Chemistry and Physics ; 23(7):3905-3935, 2023.
Article in English | ProQuest Central | ID: covidwho-2276300

ABSTRACT

In orbit since late 2017, the Tropospheric Monitoring Instrument (TROPOMI) is offering new outstanding opportunities for better understanding the emission and fate of nitrogen dioxide (NO2) pollution in the troposphere. In this study, we provide a comprehensive analysis of the spatio-temporal variability of TROPOMI NO2 tropospheric columns (TrC-NO2) over the Iberian Peninsula during 2018–2021, considering the recently developed Product Algorithm Laboratory (PAL) product. We complement our analysis with estimates of NOx anthropogenic and natural soil emissions. Closely related to cloud cover, the data availability of TROPOMI observations ranges from 30 %–45 % during April and November to 70 %–80 % during summertime, with strong variations between northern and southern Spain. Strongest TrC-NO2 hotspots are located over Madrid and Barcelona, while TrC-NO2 enhancements are also observed along international maritime routes close the strait of Gibraltar, and to a lesser extent along specific major highways. TROPOMI TrC-NO2 appear reasonably well correlated with collocated surface NO2 mixing ratios, with correlations around 0.7–0.8 depending on the averaging time.We investigate the changes of weekly and monthly variability of TROPOMI TrC-NO2 depending on the urban cover fraction. Weekly profiles show a reduction of TrC-NO2 during the weekend ranging from -10 % to -40 % from least to most urbanized areas, in reasonable agreement with surface NO2. In the largest agglomerations like Madrid or Barcelona, this weekend effect peaks not in the city center but in specific suburban areas/cities, suggesting a larger relative contribution of commuting to total NOx anthropogenic emissions. The TROPOMI TrC-NO2 monthly variability also strongly varies with the level of urbanization, with monthly differences relative to annual mean ranging from -40 % in summer to +60 % in winter in the most urbanized areas, and from -10 % to +20 % in the least urbanized areas. When focusing on agricultural areas, TROPOMI observations depict an enhancement in June–July that could come from natural soil NO emissions. Some specific analysis of surface NO2 observations in Madrid show that the relatively sharp NO2 minimum used to occur in August (drop of road transport during holidays) has now evolved into a much broader minimum partly de-coupled from the observed local road traffic counting;this change started in 2018, thus before the COVID-19 outbreak. Over 2019–2021, a reasonable consistency of the inter-annual variability of NO2 is also found between both datasets.Our study illustrates the strong potential of TROPOMI TrC-NO2 observations for complementing the existing surface NO2 monitoring stations, especially in the poorly covered rural and maritime areas where NOx can play a key role, notably for the production of tropospheric O3.

13.
Cosmic Research, suppl 1 ; 60:S57-S68, 2022.
Article in English | ProQuest Central | ID: covidwho-2272929

ABSTRACT

This paper considers the level of atmospheric air pollution of the 20 largest cities in Russia in 2019–2020. The data used for the study is initially collected by a TROPOMI instrument (on the Sentinel-5P satellite), including measurements of carbon monoxide, formaldehyde, nitrogen dioxide, sulfur dioxide, and aerosol (aerosol index). The measurements were obtained using the cloud-based platform, Google Earth Engine, which presents L3 level data available for direct analysis. The Tropomi Air Quality Index (TAQI) integrates available TROPOMI measurements into a single indicator. The calculation results showed that most of the cities under consideration (15 out of 20) have a low or higher than usual level of pollution. Formaldehyde (35.7%) and nitrogen dioxide (26.4%) play the main role in the composition of pollution particles. A significant share is occupied by sulfur dioxide (16.4%). The contribution of carbon monoxide and aerosol averages 10.8 and 10.6%, respectively. Air pollution in cities is caused by both natural (wildfires, dust storms) and anthropogenic (seasonal migrations of the population, restrictions due to the COVID-19 pandemic) factors. Estimating atmospheric pollution levels in urban areas using an integral index based on remote data (such as TAQI) can be considered as a valuable information addition to existing ground-based measuring systems within the multisensory paradigm.

14.
Atmosphere ; 14(2):234, 2023.
Article in English | ProQuest Central | ID: covidwho-2260661

ABSTRACT

We updated the anthropogenic emissions inventory in NOAA's operational Global Ensemble Forecast for Aerosols (GEFS-Aerosols) to improve the model's prediction of aerosol optical depth (AOD). We used a methodology to quickly update the pivotal global anthropogenic sulfur dioxide (SO2) emissions using a speciated AOD bias-scaling method. The AOD bias-scaling method is based on the latest model predictions compared to NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2). The model bias was subsequently applied to the CEDS 2019 SO2 emissions for adjustment. The monthly mean GEFS-Aerosols AOD predictions were evaluated against a suite of satellite observations (e.g., MISR, VIIRS, and MODIS), ground-based AERONET observations, and the International Cooperative for Aerosol Prediction (ICAP) ensemble results. The results show that transitioning from CEDS 2014 to CEDS 2019 emissions data led to a significant improvement in the operational GEFS-Aerosols model performance, and applying the bias-scaled SO2 emissions could further improve global AOD distributions. The biases of the simulated AODs against the observed AODs varied with observation type and seasons by a factor of 3~13 and 2~10, respectively. The global AOD distributions showed that the differences in the simulations against ICAP, MISR, VIIRS, and MODIS were the largest in March–May (MAM) and the smallest in December–February (DJF). When evaluating against the ground-truth AERONET data, the bias-scaling methods improved the global seasonal correlation (r), Index of Agreement (IOA), and mean biases, except for the MAM season, when the negative regional biases were exacerbated compared to the positive regional biases. The effect of bias-scaling had the most beneficial impact on model performance in the regions dominated by anthropogenic emissions, such as East Asia. However, it showed less improvement in other areas impacted by the greater relative transport of natural emissions sources, such as India. The accuracies of the reference observation or assimilation data for the adjusted inputs and the model physics for outputs, and the selection of regions with less seasonal emissions of natural aerosols determine the success of the bias-scaling methods. A companion study on emission scaling of anthropogenic absorbing aerosols needs further improved aerosol prediction.

15.
Energies ; 16(3):1446, 2023.
Article in English | ProQuest Central | ID: covidwho-2289096

ABSTRACT

The increasing concentration of anthropogenic CO2 in the atmosphere is causing a global environmental crisis, forcing significant reductions in emissions. Among the existing CO2 capture technologies, microalgae-guided sequestration is seen as one of the more promising and sustainable solutions. The present review article compares CO2 emissions in the EU with other global economies, and outlines EU's climate policy together with current and proposed EU climate regulations. Furthermore, it summarizes the current state of knowledge on controlled microalgal cultures, indicates the importance of CO2 phycoremediation methods, and assesses the importance of microalgae-based systems for long-term storage and utilization of CO2. It also outlines how far microalgae technologies within the EU have developed on the quantitative and technological levels, together with prospects for future development. The literature overview has shown that large-scale take-up of technological solutions for the production and use of microalgal biomass is hampered by economic, technological, and legal barriers. Unsuitable climate conditions are an additional impediment, forcing operators to implement technologies that maintain appropriate temperature and lighting conditions in photobioreactors, considerably driving up the associated investment and operational costs.

16.
Weishengwuxue Tongbao = Microbiology ; 50(2):667, 2023.
Article in English | ProQuest Central | ID: covidwho-2288070

ABSTRACT

In recent years, the global outbreak of COVID-19 has aroused public attention to the potential risks of bioaerosols and the studies about the potential health hazards of bioaerosols from anthropogenic sources have been increasing. We introduced the research status of four main anthropogenic bioaerosols in recent years, compared the distribution and composition characteristics of bioaerosols from different anthropogenic sources, and analyzed the main factors affecting the characteristics and potential risks of bioaerosols. The average concentration of bioaerosol is high in animal farms, moderate in wastewater treatment plants and landfills, and low in hospitals. The microbial composition of bioaerosols at different sites is closely associated with the bioaerosol source and affected by the environmental conditions. Furthermore, this work prospected the main research directions of anthropogenic bioaerosols in the future, aiming to lay a foundation for the establishment of bioaerosol control standards and the development of control technology.

17.
Sustainability ; 15(5):4547, 2023.
Article in English | ProQuest Central | ID: covidwho-2287243

ABSTRACT

The source apportionment of pollutants is the key to preventing and controlling the pollution caused by heavy metals in soils. The aim of this study was to investigate the main sources of heavy metals in the soils of black shale areas in western Zhejiang, China. Based on geostatistical spatial analysis, this research employed positive matrix factorization (PMF) for the source apportionment of heavy metals in paddy soil. The results showed that contaminated arable soils were concentrated in the western and southern study areas. At least five major sources of heavy metals were screened in this study: natural sources (39.66%), traffic emissions (32.85%), industrial emissions (9.23%), agricultural activities (9.17%), and mining (9.10%). To be specific, Cd was mainly from mining;As originated from agricultural inputs such as fertilizers and pesticides;and Hg, as an industrial pollutant, was transported by atmospheric deposition in the study area. The accumulation of Pb, Zn, and Cu was mainly influenced by natural sources and anthropogenic sources, i.e., traffic emissions, while that of Cr and Ni was controlled by natural sources.

18.
IOP Conference Series Earth and Environmental Science ; 1143(1):011001, 2023.
Article in English | ProQuest Central | ID: covidwho-2247328

ABSTRACT

1. Preface/IntroductionWe are pleased to share with you the scholarly papers that were presented during the 2nd International Conference on Environmental Sustainability and Resource Security (IC-ENSURES 2022), which was held virtually on March 8 and 9 in Johor, Malaysia, at Universiti Teknologi Malaysia. This conference was held concurrently with the International Seminar on Science and Technology (ISSTEC) 2022.Centre for Environmental Sustainability and Water Security (IPASA) organises the IC-ENSURES conference series every two years. To foster information and knowledge exchange on resource security and environmental sustainability, this conference series intends to establish a global forum for professionals and academics. This time around, the theme of the conference is "Green Technology for Sustainable Future: The Next Step”. This theme is pertinent to environmental issues, disaster preparedness, and water security.With the global pandemic happening around the world, we are particularly interested to see how COVID-19 would affect our water and environment. Additionally, natural catastrophes, particularly those associated with climate change, have become more common and severe in recent years due to anthropogenic activities. Putting that in mind, the themes and topics of IC-ENSURES this year were carefully designed so that they associated with the ongoing pandemic and climate change.Engineering-related sessions including discussions on the following two major topics: environmental sustainability and resource security were carried out. These manuscripts were subjected to a rigorous review in compliance with international publication standards. We anticipate that the collection of accepted manuscripts will benefit numerous academicians, researchers, and experts in a given topic.List of Conference or sponsor logo, committees are available in this pdf.

19.
Int J Environ Res Public Health ; 20(5)2023 02 26.
Article in English | MEDLINE | ID: covidwho-2287064

ABSTRACT

This study aimed to analyze the main factors influencing air quality in Tangshan during COVID-19, covering three different periods: the COVID-19 period, the Level I response period, and the Spring Festival period. Comparative analysis and the difference-in-differences (DID) method were used to explore differences in air quality between different stages of the epidemic and different years. During the COVID-19 period, the air quality index (AQI) and the concentrations of six conventional air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3-8h) decreased significantly compared to 2017-2019. For the Level I response period, the reduction in AQI caused by COVID-19 control measures were 29.07%, 31.43%, and 20.04% in February, March, and April of 2020, respectively. During the Spring Festival, the concentrations of the six pollutants were significantly higher than those in 2019 and 2021, which may be related to heavy pollution events caused by unfavorable meteorological conditions and regional transport. As for the further improvement in air quality, it is necessary to take strict measures to prevent and control air pollution while paying attention to meteorological factors.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollution/analysis , Air Pollutants/analysis , China , Environmental Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods
20.
Earth System Science Data ; 15(2):579-605, 2023.
Article in English | ProQuest Central | ID: covidwho-2227740

ABSTRACT

We present the CarbonTracker Europe High-Resolution (CTE-HR) system that estimates carbon dioxide (CO2) exchange over Europe at high resolution (0.1 × 0.2∘) and in near real time (about 2 months' latency). It includes a dynamic anthropogenic emission model, which uses easily available statistics on economic activity, energy use, and weather to generate anthropogenic emissions with dynamic time profiles at high spatial and temporal resolution (0.1×0.2∘, hourly). Hourly net ecosystem productivity (NEP) calculated by the Simple Biosphere model Version 4 (SiB4) is driven by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) dataset. This NEP is downscaled to 0.1×0.2∘ using the high-resolution Coordination of Information on the Environment (CORINE) land-cover map and combined with the Global Fire Assimilation System (GFAS) fire emissions to create terrestrial carbon fluxes. Ocean CO2 fluxes are included in our product, based on Jena CarboScope ocean CO2 fluxes, which are downscaled using wind speed and temperature. Jointly, these flux estimates enable modeling of atmospheric CO2 mole fractions over Europe.We assess the skill of the CTE-HR CO2 fluxes (a) to reproduce observed anomalies in biospheric fluxes and atmospheric CO2 mole fractions during the 2018 European drought, (b) to capture the reduction of anthropogenic emissions due to COVID-19 lockdowns, (c) to match mole fraction observations at Integrated Carbon Observation System (ICOS) sites across Europe after atmospheric transport with the Transport Model, version 5 (TM5) and the Stochastic Time-Inverted Lagrangian Transport (STILT), driven by ECMWF-IFS, and (d) to capture the magnitude and variability of measured CO2 fluxes in the city center of Amsterdam (the Netherlands).We show that CTE-HR fluxes reproduce large-scale flux anomalies reported in previous studies for both biospheric fluxes (drought of 2018) and anthropogenic emissions (COVID-19 pandemic in 2020). After applying transport of emitted CO2, the CTE-HR fluxes have lower median root mean square errors (RMSEs) relative to mole fraction observations than fluxes from a non-informed flux estimate, in which biosphere fluxes are scaled to match the global growth rate of CO2 (poor person's inversion). RMSEs are close to those of the reanalysis with the CTE data assimilation system. This is encouraging given that CTE-HR fluxes did not profit from the weekly assimilation of CO2 observations as in CTE.We furthermore compare CO2 concentration observations at the Dutch Lutjewad coastal tower with high-resolution STILT transport to show that the high-resolution fluxes manifest variability due to different emission sectors in summer and winter. Interestingly, in periods where synoptic-scale transport variability dominates CO2 concentration variations, the CTE-HR fluxes perform similarly to low-resolution fluxes (5–10× coarsened). The remaining 10 % of the simulated CO2 mole fraction differs by >2 ppm between the low-resolution and high-resolution flux representation and is clearly associated with coherent structures ("plumes”) originating from emission hotspots such as power plants. We therefore note that the added resolution of our product will matter most for very specific locations and times when used for atmospheric CO2 modeling. Finally, in a densely populated region like the Amsterdam city center, our modeled fluxes underestimate the magnitude of measured eddy covariance fluxes but capture their substantial diurnal variations in summertime and wintertime well.We conclude that our product is a promising tool for modeling the European carbon budget at a high resolution in near real time. The fluxes are freely available from the ICOS Carbon Portal (CC-BY-4.0) to be used for near-real-time monitoring and modeling, for example, as an a priori flux product in a CO2 data assimilation system. The data are available at 10.18160/20Z1-AYJ2 .

SELECTION OF CITATIONS
SEARCH DETAIL